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Abstract

‘The elastic-scattering of electrons from atomic helium
in the ground state is investigated., It is shown that for low
energy incident electrons the scattering problem reduces to solving
an ordinary integro-differential equation for the scattering
wave-function. A method is discussed to obtain approximate solutions
to the integro-differential equation by variational principles,
The extremum condition of the variational method is formulated into
a general N x N matrix equation which reduces to a 2 x 2 eigen-value
matrix problem for the phase-shift of the scattering electron.
An algorithm is presented to obtain the collisional cross-section

for elastic scattering as a function of incident electron energy,
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1. Introduction

Background
It is well-known that approximate methods based on variational

principles are among the most powerful techniques used in solving
quantum mechanical problems. In bound-state calculations, the
Raleigh-Ritz variational method gives energy eigen-values which are
correct to second order in the error of an assumed trial wave-function.
The method also determines the free parameters of the wave-function
and guarantees that the calculated eigen-values are upper bounds

to the exact energy eigen-values of the bound system,

In scattering theory however, the total energy of the system
is specified in advance, Variational principles are used to determine
to first order the free parameters of the trial wave-function which
contain all information of the scattering event. Unfortunately, no
general bounding conditions are yet known on the solutions of the
continuum problem calculated by variational methods. Thus there exists
no defined standard (e.g., upper or lower bounds) with which to compare
computed results using different trial wave-functions,

In spite of this difficulty, variational principles applied to
scattering problims oifer several advantages over other approximation
methods, First, variational methods require, in general, far less
numerical effort than non-variational methods. Second, results
obtained by variational calculations, although not internally bounded,
compare favorably with those obtained by more powerful non-variational
techniques. Finally, physically complex interactions such as polarizatiom
and electron correlation effects can easily be included in a variational
calculation within the assumed forms of the trial wave-functions.

It is for these reasons that variational principles are still
competitive with other more powerful non-variational scattering
techniques.

The first serious attempt to apply variational principles

to electron-helium scattering was made by Moiseiwitsch (Ref. 1).




Using the variational method proposed by Hulthen (Ref. 2) and a

two parameter trial wave-function, Moiseiwitsch found good agreement
(10%) for the S-wave elastic scattering phase shift with the known ,
numerical solutions of the same integro-differential equations performed

earlier by Morse and Allis (Ref, 3). Moiseiwitsch further suggested

that improved results could be obtained by more complex trial
i wave-functions.

In a detailed study of variational principles applied to
continuum problems, Schwartz (Ref. 4) first noted that at certain
system energies variational calculations possess intrinsic anomalous
behavior. He showed that as more complex trial wave-functions and P

more adjustable parameters are added to the variational calculations,

the solutions do not converge uniformly, and can turn out totally
erroneous for specific incident electron energies. Schwartz also

studied the nature of these anomalies. He showed that although a

trial set of functions is linear with respect to a set of corresponding

parameters, the quantity which is extremized is the expectation value ’{'
of the scattering Hamiltonian operator. This quantity is always quadratic
in the parameters of the trial wave-function. As a result, the

parameters of the wave-function have, in general, two roots, onlv one

of which is phuyvsical. At certain system energies these roots can

be complex and the variational method will break down.

Several attempts have been made to eliminate the anomalous
nature of a single variational method by combinations of two different
variational methods. Conditional calculations proceed in the same
manner as 8 single variational method. However, when anomalous results
begin to appear in one variational calculation, a transfer is made to
a second variational method. Although two independent methods
possess intrinsic energy anomalies, they do not, in general, occur

in the same energy regions, Thus by alternating back and forth

whenever a single method fails, accurate results have been obtained

over the entire spectrum applicable to the physical limitations of




the approximations made,

Malik (Ref., 5) and Rudge (Ref. 6) proposed combining the
variational method of Hulthen and Kohn (Ref., 7). Applicatior of this
technique has been only applied to electron-hydrogen scattezring by
Rudge (Ref, 6), Nesbet (Ref. 8) proposed the method of combining the
variational principles of Kohn and the Inverse Kohn, Rubinow (Ref. 9).
Both combinational methods demonstrated the anomaly~-free nature of the
technique but were restricted in practice to elastic scattering for
hydrogen, since the methods could not be generalized to include
inelastic scattering.

The most successful anomaly-free variational technique is
the Transformation Method, Harris and Michels (Ref. 10), This
method introduces a transformation which ensures that the anomalous
energy regions are forced outside the range of the energy spectrum
of interest. Application of the transformation technique to variational
calculations of electron elastic scattering from helium was first
performed by Michels, Harris and Scolsky (Ref, 11). This work was
extended by Sinfailam and Nesbet (Ref, 12). Trial exponential
wave-~functions with decreasing numerical indices were used. The results
of the calculations of the cross-sections compared extremely well
(3% estimated probable error) to the experimental measurements of
Golden and Bandel (Ref. 13).

Nesbet (Ref. 14) refined the calculations of Sinfailam and
Nesbet (Ref, 12) for electron elastic scattering from helium. The
results for the cross-section compared extremely well (1.5%) with the
best non-variational technique, the R-matrix Method, 0'Malley, Burke
and Berringtoiy (Ref. 15), The Nesbet (Ref, 14) calculation represents
to date the best variational results on the electron-helium elastic
scattering croos-section,

The single drawback of the anomidly-free variational methods
is the increase in numerical labor required above the simpler variational
calculations. Recently, Shankland (Ref. 16) proposed a variational

—




method which retains the simplicity of the single variational approach.
Recognizing that a single variational method fails only in small

energy regions near non-physical anomalous poles, he proposed a
simple interpolating technique to obtain an accurate cross-section
in the singular regions, If successful, this method will reduce
the numerical labor required for computing accurate elastic

electron-atomic cross-sections over a large energy spectrum,

Objective

In the present work, the Shankland Variational Method is
formulated for the electron-helium elastic scattering problem.
Specifically, an algorithm is developed to obtain variational
solutions for the scattering phase-shifts as a function of incident

electron energy.

Approach
In Chapter 11 the basic formulation of the electron-helium

scattering problem is presented, In particular, the close-coupled
formulation is discussed, Specifically, the simplest case of the
closed-coupling method, the one-state approximation, is developed

in detail., 1In Chapter IIT the Matrix-Variational Method is formulated.
First the general variational method is applied to the electron-helium
scattering equation, Second the results of the variational formulation
are developed into a matrix eigen-value problem, In Chapter IV a
detailed algorithm is presented for the calculation of the elastic
scattering phase-shifts as a function of incident electron energy.
Finally, an interpolation method is discussed for the special case

in which the Matrix-Variational Method mathematically yields anomalous
results, Appendix A is a compilation of the A-Matrix elements

required in the computation. Appendix B is a compilation of the
B~Matrix elements also required in the computation. Appendix C

is a compilation of the definite integrals used throughout the calculation,

AN




11, The Quantum Mechanical Problem

Basic Formulation

In this section the quantum mechanical formulation of electron

impact with helium will be presented., The basic framework for this
approach can be found in a number of articles, Massey (Ref, 17),
Moiseiwitsch and Smith (Ref. 18), as well as texts by Mott and
Massey (Ref. 19) and Geltmann (Ref. 20)., In the following, the
formulation presented by Mott and Massey (Ref. 19) is the most

convenient, Atomic units will be used throughout, (Ref. 19).

The wave equation for the scattering of an electron

by a helium atom is given as

2 -
(V; 49:#7310.‘!*16.‘_"3-&'&*5)Y(ﬂaﬁvaoa,a@;):o (2.1)
4] ". ” r‘l '73 r” ¢

where 5, ,rfa are the distances of the three electrons from the
11727y

helium nucleus,ljz,ns,fi’ are the distances between the electrons,

and £ is the total energy of the system, The total system

. - a . . . . .
wave~-function &’(nv,,rzd"‘,f";q,) is an anti-symmetric function in
the spin-space coordinates of each pair of electrons.

The standard method of attacking :he general N-body
scattering problem is to expand the total svstem wave-function
in terms of the orthonormal set of target wave-functions. For

electron~helium scattering we simply have

oo
- = -
W(70,,7202,7303)= L R ¥, (110, 1a03) F,(70y) (2.2)
nzo
ol =3
where ‘f'n("nq."‘ﬂ;’denotes the 1nth state system wave-function for the
unperturbed helium atom, It is an anti-symmetric wave-function

in the spin-space coordinates of the helium electrons and is a

solution to the helium equation
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where Ep is the energy of the nth state of the atom. The summation
in equation (2.2) includes both a sum over bound spin-space states
and an integration over the continuum states of the helium system.
The function F;(f;,qa), representing the nth state expansion
coefficient, is a one-electron scattering wave-function, The
operator 4 anti-symmetrizes the product functions as required
by the Pauli Principle.

If the wave number of the incident electron is Mg ,
in atomic units, then the one-electron scattering wave-function

F;(ﬂi::,) has the asymptotic forms

F (% 03) = Exp (iRoy )O3 + EXP (ikor3) g, (63) 03 (2.4)
r
3
and

Fn(fyay)— Erpﬁi/tnrﬂgn(eg)oa (2.5)
3

where the function Fo(!‘:.dj)denotes the plane wave incident along the
1? axis toward the target atom in the zero bound state configuration

and an elastic outgoing spherical wave in the same spin state,

The spin function @3 denotes the familiar normalized & or ﬁ

spin state representing electron spin-up and spin-down, respectively.

The function ﬁ,@%qs)denotes an inelastic spherical outgoing wave

in the allowable spin states, (:5 , provided J&: is real, If jﬂ?

is imaginary, the incident energy is less than the energy required
for an internal transition of the atom to occur, and the boundary

conditions, equation (2.5), describe a decaying spherical wave, the

sum of which describes the polarization of the initial atomic bound




state. The constraints on the total system energy are given

asymptotically as

E= &)+ Eo

&2+ En (2.6)

Once the detailed solution to the Schrodinger equation
(2.1) is available, the scattering amplitudes 3"‘.) can be determined
from the asymptotic boundary conditions defined by equations (2.4)
and (2.5). As shown in Mott and Massey (Ref., 19), the total scattering

cross-section at incident energy Jﬁ? is given as

(- -]
Qh3)= anw [(gn(8)1* sin © oLO (2.7)
[

Close-Coupling Approximation

Although the expansion represented by equation (2,2) is
formally exact, several practical difficulties limit all scattering
calculations., First, for atoms other than hydrogen or one-electron
systems, the target eigen-states are not known exactly, Second,
the bound target states form an infinitely denumerable set of functions.
Finally, the complete set of target states must include the ionization
continuum, In this case, the state index m is a continuous variable
and the number, though infinite, is not denumerable,

In practice, only a relatively small number of states
can be included in the expansion (2.,2) and are generally carefully
selected, However, a number of mechods have been developed to account
for those terms neglected in the expansion. The basic approach of
these methods is to replace the unperturbed target state wave-functions
with pseudo-state functions corresponding to the first-order perturbation
of the target state by a polarizing field. These pseudo-states
can be constructed in terms of the unperturbed target wave-functions
or other convenient basis functions, Danburg and Karule (Ref. 21),
Danburg and Geltmann (Ref. 22). The reader is referred to Mott and
Massey (Ref. 19) and Nesbet (Ref. 23) for a complete discussion of




the pseudo-state method,

Since the purpose of this study is the application of a
variational principle to the elastic-scattering of electrons from
helium in the atomic ground state, it is convenient to adopt the
simplest case of the close~coupling approximation. For incident
energies of the continuum electrons less than the first excited
state of helium (19 e.v.), the one-state approximation is assumed.

Thus
¥ (h0,,%0,.%0y) = R ¥ (Fa;, o0 Fo(fp oy (2.8)

where 'f’of’o'uaﬁ) denotes the unperturbed ground state helium
wave-function, Fe (l’,) denotes the space part of the incident electron
wave-function, and Otz denotes the electron incident in the
arbitrary spin-up state.

Substituting the space-spin heiium wave-function and
anti-symmetrizing by a cyclic perturbation of the electrons, we

have

¥(70,,R03.703) = BUAR) Foliy) (&, Ba- 2y B,) g /3 o
+ Y (AR Fo (/) (285~ agBy)x, /U
+9(RA)F(RI(N8, - x,Bs)xa /U3

where the spin function (&;Be- X3fB,)axs/Yfa is anti-symmetric with
respect to the bound helium electrons 1 and 2 and corresponds to
a doublet total spin state of the helium and incident electron.
%(a,a) is the space part of the helium wave-function and is
symmetric with respect to electrons 1 and 2.
If we substitute the total system wave-function (2.9)
into the Schrodinger equation (2.1), pre-multiply by
(crfp.:-aZA;')a; ‘f:(i’a)/di , sum over spin and integrate over
f‘ and f‘ we obtain




a0 00
[0 v ) | [ e (323 o
o o
where
X _J
= - - A a gy -
Voo (7s) j_( (_:_t;-’.__z i)pﬁ(nra)‘ dr, d¥,
and

Q”(ri’? LA "';_?)V‘q'(?")‘f"‘" (""a’vz ""o"'-‘l-":

a ra "7:. '73

W

+ 45 BRI V24 (AR)

In order to obtain this result we used Green's theorem,
the symmetry properties of the electrons and the equation

aom._
Jf%(r‘-.a)[v +v, +“+“--+E°Jl+°(r,r,_)dr dr o)
00 r ra Na

This condition is certainly satisfied if $p(Fsfa) is an
exact solution to the helium equation (2.3). Unfortunately, no
exact helium solution exists, However, equation (2.13) can also be
satisfied if a variational wave-function for the ground state
of helium is used and the ground state energy Eo 1is given by
the variational energy. In this study we have adopted Hylleraas'

variational function given as

Wo(r'ui"z) = %3 exp ( ~(Zry+Zr, ))

(2.10)

(2.11)

(2.12)

(2.1

(2.14)

%




where 2z 27/t6 and Eg= -a22* and which satisfies equation (2,.13).
Equation (2.10) represents & partial integro-differential
equation for the scattering function E,(f;) . Its exact solution,
which satisfies the boundary conditions of equation (2.4), formally
determines the scattering cross-sections. For low-energy scattering
it is convenient to reduce the partial integro-differential equation
to a set of ordinary integro-differential equations. Performing
a partial wave or angular momentum expansion on the scattering

function FQ(F") we have

oo
FotF)= L F £ (r)R (cos ) (2.15)
where R (€0 @) are the Legendre polynomials. Substituting Fo(®)
into equation (2,10), pre-multiplying by F(ec0os @) , and integrating

over all scattering angles and using the Hylleraas helium wave-function

we obtain
o0 oo ﬁ

(_‘i% k- Voo (r3) - ga_.iy);t(ra, =I ‘fL(r') Ro (i nrs) dr, dr, (2.16)
d";ﬁ r‘,‘ © 0

where
voo("a): —q(%.*Z) ExP ("az'.s) (2.17)
3
and
2
Po (nar)=_1en? nery 4, (rn.n) Y (r,n) (2.18)
(1)
x [{64214.(‘#- 2.4 +2)-29,(n rz)-za"_(ra%)}éu_a;‘(nrs)}
v, fx ry
and
BL(nir) = "-L/QL” (ri<r)
(8 ¢ (2.19)

10




The boundary conditions of the radial function fL(') are
f(ry=0 reo (2.20)
Filr)= SIN (Aar - LW + 7, re e
X

where /. is the energy-dependent phase shift of the &L -partial wave
and is determined by the exact solution to the integro-differential
equation (2,16)., It can be shown, Mott and Massey (Ref. 19), that

the total elastic scattering cross-section at incident energyv JQ} is

o0
Qo) = 22 (aLe1) sin® e (2.21)

In the case where the energy of the incident electron is
small, only the zero order phase shift 2o (L=0) is important in the
calculation of the total cross-section., This was done by Morse
and Allis (Ref., 3), by numerical integration of equation (2.16),

Setting L=0 and defining
o0
K“(rl,ra, < fPoo(r”'.a’r’) d’a (2‘22)
°
we have
(2.23)

o0
(224 K- Voo () £,013) = [ £y (2 Koo(riyry) dir,
dr} °

where

Koo(fisr3) = 16281y Exp (-21,) exP(‘Z's)'{ (ko +4z-22) (2.26)
433

+(1-2), (4-Z) _ ¥ (rsry) , ExP(-2Zr) , Exp (-2Zry)
423 I 20 223 2zt

+ E%p (- 227+ &xp (- 3zry)
2523 an,28

11
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I11. The Variational Method

General Formulation
In order to solve variationally the S-wave integro-differential

equation, we define the functional & as
[ ] ¢
&= d? | 2. t
! ’0 (l") {d—;"‘fk VN‘rj)}fo(r')dfs (3.1)

[ t [ -]
~ [#o(r) | £5(n) Koo (r, 131 dr, dr,
° °

]
where fo(r) is an assumed trial function.
Clearly, if f:(r) is an exact solution to equation (3.1),

fo(r), then =0 . 1f f;(r) is not exact, then &= constant. Now

consider the change in & if f:{t‘) is defined as
t
Fo(r) = folr) + dfy(r) (3.2)

where dfq(r) is a first order deviation from the exact solution.

Substituting, the resulting change in E is
o
_ 2
't d -‘{fotg){d%:-c» RS - Voo (rg)} Sfo (ry) dlry (3.3)
bt @
‘!fol's)h‘fa(’?”f«(’. ra)drdrg 4 O(18F,(r)1?)
o

where the symbol d(léfg("”‘) denotes integral terms of second order

in the deviation from the exact solution.
Applying Green's theorem to the first term in equation

(3.3), we have

(- - 2 o0
{ §o (ry) i‘?‘; dhalry dry = £ 8F,(r) ;:L; Fotry) :{:, (3.4)
+{ 5o‘ﬁ)d€;“o"g’ - 8h(ry) 5;("5-,('-,) } l
12




where the surface term is evaluated at the boundaries. The boundary

conditions on fo(r) are given by equation (2.20) for L:O as

fo(r1 =0 r-o (3.5)

F(r)= A sin ( kor + 7o) r—+ o

or in different form
£,(r)= Q, SIn (kor) + R S (Ro¥) r- o (3.6)

where

Q,;= Reos e

Q: AR sin ’lo (3.7)
and A 1is a normalization constant.
The boundary conditions on the difference functions are
simply
dfe(r) = O r-o (3.8)
dfo(r) = da, sin (kor) + da, cos (ker) r- o

Substituting for the boundary conditions, the surface term reduces as

o0
(Q('a’d‘%éfo("s’ - J&‘"s’ﬁfd@'}l = +Quda, - a;da R, (3.9)

I1f we impose on the normalization constant A , the condition
dJR=0 (3.10)

then it follows that
2
+Qyda, ke - A dQs ko = —~ RoR7dp (3.11)

13
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and the resultant change in the functional & is

e A A 4], d®, k> - Voo (r d (3.12)
L=~y dtz,*‘{df,(g){dr’&-;*o- 00("3)} folry)dry

(- J [}
- [ o ry)[dFo(rdKoa(r,ryy drdry + O (18fe(rI?)
o o

Since the kernel function Keo(r,rg) defined by equation (2.24)

is symmetric in ¥ and (3 we may interchange the order of integration
and interchange the indices in the third term of equation (3.12).
Thus we have

o oo
{fo(ra)ojéfo(r,)k“(", ry)dr, alrs =£Jf°("3)£f°(r;);(°°(r,r,)dr; dra (3.13)

Substituting into equation (3.12) we have

JL = - Je, A dn, + & (18F5(m1%) (3.14)

where the differential and integral terms vanish since }b(rlis an
exac® solution to the integro-differential equation (3.1).

Since the second order term can be forced vanishing small
4
by choosing more and more complex trial functions.ﬁphS) which better

approximates the exact solution fb"i) , we have
IR+ kR e) = 0 (3.15)

Thus the functional (& + bnz‘zo) is stationary provided

dR=0.
Since the condition dR=O represents a constraint on

the variational principle it can conveniently be incorporated into

the stationary equation (3.15) by use of a Lagrange multiplier.

14




From equation (3.7) we have
A= a?+al

%0 = tan”'(aaz’a,)

(3.16)

If we require the normalization of the asymptotic solution,
equation (3.5) as A=l , which satisfies the condition dRz QO , then

the constraint equation becomes

a, .2 -
a;+az-1 =0 (3.17)

Substituting equation (3.16) into (3.15), and introducing
a free parameter A/2 , a Lagrange multiplier, the stationary functional

can be written as
L= &+4olal+a3)tan' (aa/a)) -4 (at+al -1) (3.18)

Matrix Variational Method
Let f:(r) denote a trial function defined as

N
+ -
;o(r)- E a"¢ﬂ(") (3.19)

where (@.(")} is an assumed set of functions, and {an} a set of

undetermined coefficients, The conditions on the function set are

Py (r) = sin (kor) (3.20)
Pa(r) = cos (kor) (1L - Exp(-cor))

and

{bntri}z0  r:=o (n23)

{®atn}=0 r-eoo (n23) @.20

vhere Qg is an assumed positive definite parameter, We assume that

15




the trial function, equation (3.19) is an approximate solution to
the integro-differential equation (2.23). Clearly by construction
the trial function satisfies the boundary conditions of the exact
solution, equation (3.6),

If we substitute the trial function into the functional
equation (3,.1), and perform the differential and integral operations,

the functional £  becomes

N N
L= L an(Anm - Bnm)am (3.22)
ns| mesl
where
(- -]
2
Anm = [P () { L+ k3 - Voo (r1 ] $m (ry) dry (3.23)
0 draa
and
oo [ -]
Bam*= ¢n"'3”¢m (G’KOO(':"a)d"u d"a (3.24)
o o

Since the functions {¢,‘(")}are known, the A and 8 elements
are numbers corresponding to a given value of the electron energy h:' .
The functional X at a given electron energy reduces to a numerical
set of terms in the undetcrmined cocfficients &, . Thus the functional

which is stationary under variations is
NN JPUR SEpN | =1 2, .2

I=3 5 an(Anm-Bam)am + & (a*+ad) tan (?)—%(a.oaz-z) (3.25)
nZ§ ma [

If we vary the functional with respect to the parameter

set {Q..} we obtain a set of M equations defipred by

é& - o (LEn<N) (3.26)
dQn

Performing the differentiation, the resulting set of equations

16




in matrix form is

=0 (3.27)

pn

(O-hoB)& - (A-2kon0)M

O e v s ko

3
where © is an N#N symmetric matrix whose elements are
Dnm= (Anm - Bam) + (Amn +8mn) (3.28)

5 is an N#N matrix with elements B,351 , Bgy®*-4 and the set

l‘nﬂ!‘°}’ QA is the NX% column matrix whose element set is {an}

and M is an NxN matrix with elements M,;TMag%=1 and {Mum=0} .
Formally, equation (3.27) represents an NXN linear matrix

problem which can be solved for the complete set of coefficients, {Qn} .

However, only the coefficients @, and Qghave physical significance

for determining the scattering phase shift, equation (3.16), and thus

the collissional cross-section. It is convenient therefore to reduce
the NXN linear matrix problem to a AXQ eigen-vilue problem.

Let X be a sub-set of the column matrix & composed of
two elements @, and Qz. Similarly, let Y be a sub-set column

composed of N=2 elements as--- QN . Thus
= _ /X
Q= {Y, (3.29)

Defining

A= A= 2Rone (3.30)

equation (3.27) becomes

Cu Caa)fX =/‘ X (3.31)
Cas Caaf\Y (o)




where Ciy is 8 QX2 array consisting of the four elements: On ,
Dia-&y s Dai+ ko » and Dga . The term C,3is a two row by N column
array containing the element sets{Oin} and {Dan} for (3<n < N)
Similarly C4, is an N row by two column array containing the elements
{On} and {Oaalfor (3 £n €N) . 1In particular, €z is the transpose
of € . Finally, Cas is an (N-2)%(w-2) symmetric array composed of
the elements {Dam} n,m 23.

Expanding the matrix equation (3.30) we have

= x
CHX"' CIQ.Y /( (3.32)
CX+Ca2¥= O

Operating on the lower set of matrix equations by the inverse matrix

of the €y, array, we have
-4
Y= ~ Caa Cay X (3.33)
Substituting for ¥ we obtain a 2»2 eigen-value problem

(Cn-C1aCaz Cay)X = uX (3.34)

Expanding out the @, elements the eigen-value problem

becomes

(on-Ey) (Oi2-Eig-bo) a,)_ﬂ a,, (3.35)
(Dz,‘Em“‘ho) (Daz-Ea) Qa Q,
where we have defined the value of the E elements as
n=i,2 (3.36)

-1
Enm = CigCyq lenm m=1,2

e .
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and denotes the mm eleu nts of the Cyj3Caq3 C5; matrix operation,

The characteristic equation for the eigen-values m 1is

simply

/“'2' —,“-{(Du"Eu )+(®22-E22)} + {(Ou-Ey)(Daa-E,z) (3.37)

= (O12-E12-Ro) (021 -Ea+4&,)} = ©

which can be solved by elementarv means.

The solution to equation (3.37) yields two eigen-values,

/M ,and Mg since the characteristic equation is quadratic in Ak .
Similarly there exist two eigen-vector solutions, X, and X3 , as
well as two values of the phase shifts ), andga for each value
of the incident energy.

In practice it is not difficult, in general, to select which
values of the phase shift correspond to a physical solution to the
scattering problem. This is due to the fact that the phase shifts
are defined as the arc tangents of the ratios of the components of the
eigen-vectors, equation (3.16)., Thus one set of phase shifts will
exhihit a unitform and continuous behavior as a function of vnergy,
while the second set of phase shifts exhibits a strongly divercent
behavior in energv. Although both sets of phase shifts represent
the formal solution to the quadratic equation, the diverging set of
phase shifts can be rejected as the physical solution to the
scattering problem,

However, equation (3.7) presents a far more difficult
problem for specific regions of the electron energy. Since C,# Cz .
the roots of the characteristic equation can be complex. Since the
scattering phase shifts are real for all values of the electron energy
less than the excitation energy of the helium atom, the variational

method will fail. In this case both solutions to the characteristic

equation yield non-physical results,




Another problem results due to the quadratic nafure of the
characteristic equation and the continuo;s dependence of the solutions
on the incident energy,Jt:. While over a broad range of the energy
spectrum only one set of phase shifts represents the physical solution
to the scattering problem, for different energy regions the physical
set can change. Thus we can expect a small energy region in which
both sets of phase shifts are simultaneously diverging. In these
regions the physical phase shift must be obtained by averaging the
two., It must be emphasized that there is no physical significance
to the anomalous behavior of the phase shifts as a function of
incident electron energies., Ipn fact, the anomalous behavior is simply
an artifact of the variational method of calculation applied to
the continuum scattering problem,

In Chapter IV we will develop a computational algorithm
for the variational calculation using Slater-type trial functions
for the trial function set {@nfr)},N23. In particular we will

also discuss an interpolation technique to obtain values for the phase

shifts at the anomalous energy values,




. .

IV. The Variational Calculation Algorithm

Slater-Type Functions

The first step in the variational calculation is the
selection of a specific set of basis functions to represent the trial
solution, f,*(r) . Clearly, the basis functioms ¢,(r) and¢1(rl ,
defined by the equations (3.20), are constructed in order to satisfy
the boundary conditions of the exact solution to the integro-differential
equation, equation (2.23). However, the conditions imposed on the i
basis set of functions for M23 are simply that they vanish at

the boundaries, equation (3.21). A particularly simple set of

AN

functions which satisfy the conditions are the Slater-type Functions

defined as

Pnlr) = r exp(-Bnr) (4.1)

where Fn is a positive number which is different for each functional 1
term in the expansion, equation (3.,19). Thus the assumed form of k
the trial wave-function is

N

F2(r)= Qg sin (Jor)+ @, €08 (Ror)(1- EXP (~%T)) +n}__'_3q,, rexp(-Buy.. 2

Substituting equation (4.2) into equations (3.23) and (3.24)
we can obtain explicitly the matrix elements Ram and Bpm .
Appendix I is a compilation of the Rnam matrix elements. Appendix II
is a compilation of the B, matrix elements. Appendix III is a
compilation and an evaluation of the definite integrals in which
the elements Apm and Bam are expressed, Since the evaluation of
the matrix elements is particularly tedious, the choice of the
Slater-Type Functions was made to minimumize the chance for error
involved in the evaluation., In addition, the definite integrals

resulting from the differentiation and integration of the functions




have, in general, simple closed-form solutions. Clearly there is

little restriction on the form of the basis set for {Pna(r)}, n23 .

However, in order to take advantage of the Variational Method as a

labor saving technique for scattering calculations, there exists,

in practice, a pragmatic trade-off in the selection of the basis set.
Clearly, with the set of matrix elements given in the appendices,

we are in a position to generate a computational algorithm to calculate

the S-wave phase shift for the elastic scattering of electrons from

helium in the atomic ground state.

Computational Algorith

STEP I: Initialization of Parameters

There are two types of numerical parameters needed in the
calculation. First, the values for #p and 2 denoting the wave-number
of the incident electron and the ground state energy of the helium
atom relative to the first ionization continuum, Eg=~Z% (atomic units).
For the Hylleraas wave-function, equation (2.14), the first continuum
is Eg= ~2.847¢ , which restricts the values of & between O<Ro<i.68 .
Since we have neglected the contributions of the excited states of
telium, the values taken by 4&} must be restricted to less than the
energy of the first excited state of the target atom. Thus we have
Zx1.697 and O<je 1.3 .

The second set of parameters required are those defined by
the basis set, %and the set {p,,} , depending on the number of
Slater-Type Functions assumed, Sinfailam and Nesbet (Ref, 12)
have had particular success in the more complex anomaly-free Variational
Method with a decreasing geometric progression of exponents .
Although this selection is difficult to justify on mathematical grounds,
we will assume that the decreasing geometric progression represents
a starting point in the calculation, Clearly, accurate cross-sections
will result only after several different runs are made using different

distributions of the parameters {Pn} . To initiate the calculation,

22




5 ey i

L e e A A S P 3 K B 7

—aa

the following set of parameters are defined =4 | p,: - B
Bz (Bn-1)/a , for n>3 .

STEP II: Calculation of the Matrix Elements

Once the numerical values Z , Ry s % 8s » By By are
specified, the matrix elements Amm and Bpm can be calculated explicitly
using the Appendices and the formulae for the evaluation of the

definite integrals, Appendix III.

STEP III: Construct the Dpm Matrix

Once the matrix elements AymandBamare known, we can construct
an auxiliary matrix Dnam given by equation (3.28)., 1If we set D,'af- D.g‘hn
and D;,:D.m&, the simultaneous equations are defined, equation (3.31).
For illustrative purposes we will assume a two-free parameter trial

function which produces a 4»4 matrix set. Thus equation (3.31)

becomes
{ D, D:z Di3 Dy 1f @i [GJ (5.3
Dy Das Da3 Day || Qa) P a,
D3, D3a D33 Dyy (| ay a,
| Dui Duya Das D‘HJ La.gj _a‘,J
where
’
Cn = (o," D") (4.4)
Day Daa
Can ( D33 Du} 5
2 Dys Dyw (4.
Dig Dy T
Co,t ) Ca=C :
2 Dag Daw and al 12 (4.6)
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In fact, the €y matrix is independent of the number of

<
basis functions used in the expansion of the trial function $g(r).

STEP IV: Calculate the £ Matrix

At this point the %2 eigen-value problem is set up,
equation (3.35). The most difficult part of the program, from a
numerical point, is the operation C,q C—} c_Tz , to yield a

2xQ mwatrix with elements

ol v
E,= Cia C':..a ":,"' In 4.7)
E.a: c’z cxz CIz "z
- 1
Ey=CnaCarCialqgy
-y T
Ezz’ CiaCaa Cialaa

Clearly in the case illustrated, this only requires obtaining
the inverse of the 22%2 matrix, and can be accomplished by elementary
means, provided DEY C29#0 . For the general N-trial function case,
we require the inverse of a W-2¥N-2 matrix., In fact, the speed
and efficiency of performing the C,;_'; matrix operation represents
a pragmatic bound on the number of basis functions used or the range
of incident electron energy spanned in a single machine run, Clearly,
if DET Cg470, which is a preliminary requirement for the Ci‘a
operation, the Matrix Variational Method completely fails to yield
a phase shift at the specific value of k: . In this case the trial
function assumed does not represent the exact solution to the
integro-differential equation to first order and the stationary
principle must be suspect. Clearly, additional terms must be added to
5:(1-) and the particular energy region around h’.. studied in a later
machine run, In practice, if DEY C4q*0, a simple print of the
singular region is only required. A return to STEP II with an
incremental increase in the value of k: removes the calculation

from the singularity and the program proceeds.




STEP V: Solving the Eigen-Value Problem

All the elements are now available to solve the eigen-value

problem, equation (3.37), and which is of the form
Mrr+ T+ e =0

which has the solution

S = -&t/ A2 4e

2

and yields the real eigen-values g, and A, , proveded b-z > 4¢
In this case the eigen-values are substituted back into equation
(3.35) and the real components of the eigen-vectors (@&,,Q3/lg and
(an.a;l‘are determined. From these, the needed phase shifts are
calculated as Mg= tan-'(ﬂafd.)and as tan '(az/al); -

Figure 1 is a schematic plot of the real eigen-values a

and 2 as a function of Jb: for electron scattering from hydrogen,

Shankland (Ref. 16), Although the basis set used by Shankland were

Gauss-type functions, the general characteristic of the solutions,
using the Vatiational Mcthod, are independent of the basis set,
Thus Figure 1 illustrates the general nature of the solution to

the eigen-value problem,

(5-8)

From the figure, it is clear that at a given wave-number “o s

only one phase shift has converged to the exact solution to the

scattering equation, The other phase shift is divergent. 1In practice,

a simple print and/or plot of the values 4 and Ra as a function of e

is -w:-ici ot ¢ determine accuratelv the p-ical phase <shift

over the entire energy spectrum,

However, there exist anomalous regions near k,-v.l and R~ .7

where neither solution 4., or 72 converged to the exact solution,

2
Similarly, there exists another region k"-l.f vhere & < He

and the roots of the eigen-value problem are imaginary. Clearly, if
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Variational Solution ———

fixact Solution e

Figure 1, The Phase Shifts 1, and Ta for Flastic Scaticvring
from llydrogen, as a lunction of Incident
Wa\'c—Numhcr,ko .
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high accuracy of the phase shifts is not required in the anomalous

regions, then simple graphical or polynominal fits can be used to
estimate the value of the phase shifts, If high accuracy is required,

a more powerful interpolation technique is needed.

Interpolation Technique
Since the general location and nature of the anomalies are

known, a second machine run is required to study the anomaly in detail,

In this case the range on ¢ is restricted to the anomalous region.

Real Phase Shifts
Shankland (Ref. 16) proposed an empirical technique to

obtain accurate phase shifts in the anomalous regions, where 11
and 3 are real, based on the Stationmary Principle. Clearly, the
entire development of the Variational Method is based on the fact
that the functional I:xon‘ki » equation (3.15), is stationary
with respect to variations of the functionmal. Thus the value of

the functional YL has two real values defined as

I, =&+ Rz*o’ll (- 10)

Ia...: xa‘ A"*@‘lz 4.11)

Defining the weighed average of the functional as

I= X:0,-X.Ta (4.12)
La-&
we have
I=2L+ Atk, (4.13)
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However, since 2o we tinalle have

Q = xl’z‘ - zl na 1)
xz'x:,

In order 1o caleculare nmerically the values L, and Xa
we require the entive sct of coeflficicuts @y, &g @)y - cquation
(3.22)., VTor:zunatcely, auch ot the fatormatlion required is already
calculated as part of the eigen-value probvlen. 1o tact, the (Q3"QN)
set of coefticients can be obtained by cauatiou (3.32). 7Thus tle
coettlicient =ots (Az..Qy) tor cach piven eigen-vector scl (@, Qg

and (a,qz)a are the solutiens of

- ..-1 ’ -
(ﬂ~c1;CTZ(c‘|-/‘lﬂ} C|2)71=O (4.15)

(- C;zc‘,rl(c,,-ﬂzﬂ)-iam)ylzo (4.16)

- T
where the matrix operation CQ;LCI?_ is calculaved as sub-soction
of the Qw2 cigen-value caleculation. Thus he values of £, and

xz can o determined.,

Jmaginary Phase Shitls
ry !

In this pavticular case, Qra'(“lc and the roots ot the
¢ igen-value prolilerm are inatinary, oquution (4.9, [hus the
variational method fails to predict a real phase shift in thin
anomalous repion,

Since the twe roots are complex conjugates of cach ciher,
/“:/‘: . the components of the elgen-vectors will also be complex
conjugates: X, = x; . In order (o calculate the complex phase
shiifts we require a formula for the arctangent o! an imaginarvy

number, Let 631.4('? wheve 4 and 9 are real.,  Then Abramowith




and Segun (Bef, 25) show
E ATALtANT ( R% ) & (2Rr(gen)T ) a7
2 J-x* -y 4 2 3
Y B2+ (y-1)
-
thus we find Q. =a . Since 1’.: t,. , substitutiag into equation
(4.4), we have
- »
n(reaL)z Im (&)
-
Im (L7)
4 1

which represents an interpolation formula for obtaining the real

Ch.1n)

phase «hift in tlie anomalous region of the complex ciyen-values,
In Figure 2 we will outline the basic steps required Lo

compute the phase shifts for olastic scatlering in algorithm torm
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DEFINE
Z,% B3 B

SET
Ro=0O
l

INCRENENT -
ko=ky+t 0.1 ‘

CALCULATE
Anm Bnam

APPENDIN &) B, ¢

J i
CONSTRUCT ' ]( JI
Onm iquat lou (3.28) .

Dja= Dz~ #Ro
Dar= Daut ko

|
| |
|
!

Yquation (3.31)

CALCULATE
-l r SToRE
Caz Cia

Figure 2. Alporithm ior the Calculation of the U-WVave
Phase Shift for Elastic Flectrou Helium
Scattering (continued).
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CRLCULI};TET Equation (3,520
£=C1aC2Ce
CALCULATE
2,,2_ e tquation (3.27)
<0 [ >0 |
DEFINE
RERL ,1MAg
PARTS
MAaTRIX
CRLCULATE . . - i,
Equation (3.37) /
EiGENVALUSS l‘t ,
COMPLEX CALCULATE euation (3.34)
INTER POLRTE EIGENVECTOR quation (3.3%
CALCULATE IFquation (3.10)
} R Ra or (4.17)
i
t

Figure 2, Algovithm for the Calcealation of tiwe S-Wave
hase $.10r for Elastic Llectron lelium
Seal!cering (continued),




CALCULRTE
SLOPE

a1, 41
Ak’ 2k, i .

RERL |
1F SIgN  CHARGE [ inT2r PrLATE
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¢
CALCULATE Fquaticn (2210
CROS5-SECTION
IF KRp>13 END |
INCREMENT Ko ){ i

o e e e o e e e

2 Aleorithm for the calculation of the S-Wave

igure
Phase shict for Elastic Klectron Heliam

Scattering.




V. Conclusion

The object of this thesis was to theoretically formulate
the Shankland Variational Method for application to the electron-
helium elastic scattering problem, It was found that the scattering
problem reduces, in the limit of low electron incident energy, to
solving an integro-differential equation,

Instead of formally solving the differential equation, a
variational approach was used to approximate the exact solution,

The results obtained by applying the variational stationary principle
were formulated into a general matrix problem. It was shown that
the matrix problem redues to a 2% matrix eigen-value problem,

An algorithm was developed to calculate the phase shifts for
the scattering electron at ircident energy Jd: s, by solving the
eigen-value problem. An interpolating technique was discussed which
can extract the phase shifts when the eigen-value problem gives
anomalous results,

It appears from the theoretical formalism that the Matrix
Variational Method provides a relatively simple technique for solving
complicated scattering problems. The author suggests that further
vork he directed toward implementing the algorithm numerically
and comparing the results with known numerical solutions of the

integro-differential equation. Although the physical limitations of

the theory preclude comparing the results with experimental measurements,

the author suggests that further work be performed to develop tiic

technique for polarized orbitals and inelastic collisions.
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APPENDIN A ihe A Matrix Klements

In this appendix we list the A matriy elements detined
bv equation (3,23 and using the trial wave-iunction dedjned by
cquaticn (4.2),

Ru: ﬂﬂl(az/ha) + ‘4112(511/&0)
Ro

Az -[g_ilf.a(do/ho) + A%, (do/Ro)+ 4{ L, (cor 22)/k,) - Iy (aZ/k,)}

4 %{ I3((q+2Z)/k,) -1[3(:22/,&0)}]

Ain= E?i%’_ms(ﬁn/ko) - 26 Lo(n ko) + 416 ((fnt Z)/R,)

+ 42X s ((Br+taZ)/k,)
2y

Ra = Iy (RX/Ro)- 4Ty ((2Z+Ro) /o) + 42 I3 (aZ2/R,)
~ 42T, ((QZ+ Qg )y ) N
Ro
- {‘_"f:{l[? (do/Ro) = T 5 (3% /o) | + 20%0 {TL3 (g ko) ~ 1L, (3%/KJ}
- 4{ %(i%‘i‘e)-‘:zr,(azm,,>+zt,((az+o<o)/ko)}
+4{ tn (32¥2%) - I, (32+ %)) + T ((22+25%, 140 }

RZ+ Ao
Ro

s




Aun | (BR248) Ty (Bari) - T U n) e}
x

+ 3n [ Tq(( B+ )2k - Lo (Balit)}
Ro

-+fl__{ Lq((Ba+aZ)/ko)-Tq((Bn+s*2Z) ko) }
*,

+ Q{Iq((ﬁn*aﬂ/&,) -y (B +d,+22)/h°)} ]
+o

Ani= 4 M ((Bn+2Z)/ ke)+ 4Z 5 (( Ba+2Z)/ k)
k3

(-4

o

Ana= - [3;1[8“?"*%1/&3*' Q_E.; T 5 (Bn+d)/Ro)
+ ‘.LZ{ Tg((Bn+dy+22)/4o) = Lg(( Bn+22)/ kol }
k5

- % {Tq UBn+22)/ky) - T g (« Bntdo+32)/ ko) }

-]

Anm = [m(pﬁ,ue:)_ 28m 4
(Bn+Bm)?  (Bn+fm?* (Ba+tPm+az)?

+ 42
(Bn+ Bm+2Zz)3

Ann= [(E:*‘koz) 1, + 1 + z J

46,2 —‘75'\ (Ba+Z)R?  2(Bn+2)3
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APPLWVDIN The & Marrix Lleuents

In this appendix we list che 8  matrix c¢lements defined
by equation (3.24) and using the trial wave-tunction doefined by

equat ien (4.2).

By = §___231[s<2"4€o’[(k§+42—22)115(2/,k.o) + 32 T 5(32/k,!
) %4 2R Ro
+ 2L e(32/R0) + (1-22)Lo(2/ko) + L3 (aZ/,ko)J

3
+ % Kg(2/ke) Lyl 22/R,)

Bz _3_;3[(kj+qz-1’)1[5(2/k¢,){1[8 (z/ko)—stuzw,,)/,ko)} ‘
R L 2k |

+ (1-2) W s (27k,){Iq(2/ko) ~Tq((Z+00)/ ko) }
+ (1-Z) T (2/Ro) { Ly (2/ ko)~ Tg ( 2400} ko) | |

+ (Z/ko) T 5(Z/ko) {118‘32/‘%)-% ((32+a,)4) }

+ (2/Re) L5 (32/k) { Lg (Z/ko) - Ug (Z+as)/ ko1 |

+ T 5(2/ko){Tq(32/Ro)-Tq ({324 kol

B e e R

+ Lo (32/k){ Lg(2/ko) - Tg (Eclo) /o) ]
+{Ia (2/ho)I 3 (22/ ko) ~ Ia“Z-‘-%)/&)I;“QZ-‘-%)/&)}
+{ T (24+2)Ry ) IL, (a2 +ep) k) - L5 (2/ ko)L, (22/k0)}

+{ILg (2440 1/ko) I ¢ (22 +d) ko) - Xy (Z/ko)m(z/b,;}J
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81’1 = 323

—

2]

[Is(z/ko) (koz-i‘ 42—22) + (1"2) 4 R

Ro (Z+Bn)3 d(z+fn)* Ry (3Z+Bn)3
+ 1 }+ 220 5(32/ ko) + 2l (32 /4o)

ko (3Z+ 3n)* 4o (Z+8n)3 (Z+n)3

~ 22 (Z/ko) |, Ls{(3Z+Pn)/Ro) | 2T (224 ) ko)
(Z+Bn)3 Kol Z+8n)> (Z+Bnr)3

(ko +42-22) I 5 (2/ko) {Lg(z/ko)-Tg (24 %0} ko) |

Bay = 823[
k3

2k,
+ (1-Z)Us (2/ko) { Lqg(z/kRol- L gl Z+)/beo) }

+ (1-2)][6(2/&0’{ﬂa(z/k,)~]£9((2+%)/ko)}
+ (2/ko) L5 (2/ko) { L (32/Ro)~T g (32+ o) /e, ) }
+ (2/R,) L (32/k,) {Ig (2/ko) ~Tg (( 2+ %5) /k0) }
+ L s(2/ko) { L q(32/ko) ~ILq((3Z+ds) kRo)}

+ g (32/ko){ Lg(2/ko)~T g ((Z+40) /R0 )}

+ g (2/ko) [T 3(22/ko) - L3 (22+%0)/Ro)

+ I 5 (2/ko) { I, €22/ ko) ~ T 7 ((RZ+ &X0)/ ko) }

= Ly (2/k) [ ILg(2Z/k0) - Lq «azmo)/ko)}]
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B, = 82° [ (3 +42 - 22) [ (g (2/ko? - Lol z+a0)/ko) " }

R 2
+(1-2z) {( Eg(2/Ro)-T gl Z+&)/R, ) (1g(2/ko)~Tq (24 a,)/ks)) |

+ (22/k) { (L (Z/ko) - L g 12+ %)/ ko)) (I g{32/k0) - Lg (( 32%’/‘%’)}
+ a{(na(ﬂko)—:l[g((uao)/&))(19(31»/*0)'319((37-“%’”“’”}
+ L g(z/ko) {Iy(-'ll/ko)-ly ((az+ do)/k°)}

~ gtz a°>/k°){17 ((22+0p) ko)~ I 7 (( 2Z+ 2% )/ o)}

- Ls (2/k) [T 5(22/hko) L3 ((RZ+0l)/ Ro)}

+ 15 ({ z+06i/ko) { Lzaz+d,i/Ry~-TLg{az+ .zac)/koi} }

Ban © 253[{’1'8(2/1%)— 13((z+ao)/ko)}{ (R3+42-22)
Ro Re (Z*ﬁn)a

+ (1-2) +_ 22 + 1 }
(z+@n)* (3z+a,)? (32+0n)2

+ 22{1;_&(32&0) —Iatszma)/ko)} -2 {m, (2/ko)-1Iq ((z+do)/ko)}
Ro(Z+Bn)3 (Z+@n)3

+ Q{Iq (32/ko)-Xq(32+a, mk,)} + { g (22+n)/Ko) - L g ((22+Bn+, w%;}

(Z+@8n)* Ro(Z+Bn)*

+ (1 2){ Lq( 2/ ko) - Tq ((Z+ o) /kko)}
(Z+ (3n)3

+2f Lo((22+fn)/ko) = Lq (32+Pn+ do)rks) }]
(Z+84)3
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BM:_92__3[1[5(2/1%){(&:-*42—22)+ (£-2) . az . 1 }
Ro (2480)3  Ro(Z+Bn)> Ro(3Z+8n)3 Ry (32+84)*

+ 2720 5(32/ke) + 2M6(32/40) + Ta(Z/ko)TL3l(2Z4n)/Ro)
Ro(Z+Bn)3 (Z2+f3n)3 R

+2(1-Z) L e (2/ko) ~ L5 (2Z/kRo) + TLs(Z/ke)LglRZ+BnV k)
(Z+8a)3 &olZtBn)? k3

an=§_2_3 (Ea(z/ko)"][af(z-fﬂo)/ho)) (k:"“lz"lz) + (1-2)
4, Ro (Z{-ﬁ,,)" (Z+Bn)*

+ 2z + 1 - Ig(Z/Ro) + T el(Z+oo)/4eo)
(32+4,)3 (3Z2+8a)2 ARo(Z+Bn)2 &Ko (Z+0@n)>

+ 2(01~2) { Ta(z/ko) -9 {(Z+aa)/ho)} + {Is (z/ko)IL & ((22*{3")/)20)}
(Z+84)3 &3

+ :zz{lla (32/ko) - I8 (( 3zmo)/ko)}+ 2{19(32/1%)-119( azmo)/ko)}
ko (z+8n)3 (z+Bn)2

-{Is (Z+do)/ ko) TLg (( 22+En+ aa)/h,)} - {Is(Z/ko) JL5U22z¢Bn)/ko)
43 k3

+{ ILs({z+do)/Ro)-IL5 ((2Z+Bn +Ao)/Re) J
Ad

40




Bam = 823[ a(kE+42-2%)  2(1-2) X
(Z+Bn)3 (z+Pm)’  (2+Bn)3(2+Bm)

+ af-z) + HZ
(Z+8n)2(2+8m)® (248n)3(32+48m)3

+ AZ + 2
(32+8n)3(2+8m)> (2+Bn)3(32+fm)* f

+ 2 + 2 (
(32+Bn)* (Z+m)3 (Z+3a)2(Z+Bm)?

- 2 — 2 _
(Z+ﬂm)"(a2*8n+[gm)3 fZ*ﬁm}3(QZ+ ﬂn'*ﬁrn)z

R




APPENDIN ¢ The Definite I

! 3
— e e s

In this appendix we list the dorinite wnrecrals vsed to
calculate rhe A and B matrix eolvments, e ccuree gaed in

the evaluation ot the integrals is Trads'vevn and gvebiik (Ret. 29).

IL,(3)= 2 rro
T(TR+4) ;
I,3) = gm,(a%w-l) >0 '
PA
I;(a’) = d ¥>o t
(73+4)
Ly(¥) = 1tan’(2) ¥>o0
< b4
Is5(7) = __RZ ¥ro
(zzfi):l. l
Te(o)= __1 -2 X [}
(32+1)
Ay (7) = 1(1_______) ¥>0
(F2+4) |
Lg(¥)= ¥2-1 >0 ~
(72+4)2
Ig(¥)= L] ¥>0
(¥2+4)
!
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